
AD-AlOT 912 CALIFORNIA UNIV BERKELEY OPERATIONS RESEARCH CENTER F/6 12/1
TWO PAPERS ON RECURSIVE EVALUATION OF COMPOUND DISTRIRUTIONS(U)
JUL A1 A S JEWELL,1S SUNDT AFOSR-81-0122

UNCLASSIFIED ORC-81-20 NL



W 8f-20
JULY 1981

TWO PAPERS ON RECURSIVE EVALUATION OF COMPOUND DISTRIBUTIONS

by
adLEVE k
WILLIAM S. JEWELL
and

BJORN SUNDT

cr.(

DTIC
OPERATIONS ELECTE

RESEARCH DEC 1 1981

CENTER _D

Approved for public reloase
PDistribution Unlimited

NIVERSITY OF CALIFORNIA • BERKELEY

81 12 01 024



Aoaession For

NTIS GRAI
DTIC TAB 1
Unannotmeed [

Just ificat io

Distribution/
Availability Codes

Avail and/or

Dist Special

TWO PAPERS ON RECURSIVE EVALUATION

OF COMPOUND DISTRIBUTIONS t

FURTHER RESULTS ON RECURSIVE EVALUATION

OF COMPOUND DISTRIBUTIONS

by

Bj~rn Sundt and William S. Jewell

IMPROVED APPROXIMATIONS FOR THE DISTRIBUTION

OF A HETEROGENEOUS RISK PORTFOLIO

by

William S. Jewell and Bj~rn Sundt

DTIC
%ELECT

DEC 1 1981

D
JULY 1981 ORC 81-20

J.IReproduction was supported by the Air Force Office of Scientific
Research (AFSC), USAF, under Grant AFOSR-81-0122. Reproduction in
whole or in part is permitted for any purpose of the United States
Government.

F, TAt ,?4ENT A ,

Approved for public releasel
Distribution Unlimited



Unclassified
IECUi',ITY CLASSIFICATION OF THIS PAGE (When Doate Entered)

REPORT DOCUMENTATION PAGE READ [NSTRINCG1O RM
__________________________________ BEFORE_COM.PLE.TINGFORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBERore 81-20o~ 0 Aq .±
4. TITLE (edSubtile) S. TYPE OF REPORT & PERIOD COVERED

TWO PAPERS ON RECURSIVE EVALUATION OF COMPOUND Research Report

DISTRIBUTIONS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(#) S. CONTRACT OR GRANT NUMSERI'a)

William S. Jewell aud Bj~rn Sundt AFOSR-81-O±22

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Operations Research Center AREA G WORK UNIT NUMBERS

University of California 2304/A5
Berkeley, California 94720

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

United States Air Force July 1981

Air Force Office of Scientific Research 13. NUMBER OF PAGES
Bolling Air Force Base, D.C. 20332 47

14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

IS. DECLASSIFICATION/OOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

i. DISTRIBUTION STATEMENT (of the abetracl entered In Block 20, ifdlfferent from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side It necoeeery and Identify by block number)

Discrete Convolutions
Compound Laws
Recursive Methods

20. ABSTRACT (Continue on revere side It neceary and Identity by block number)

(SEE ABSTRACTS)

DD ON 1473 EOITION OF INOV 65 IS OBSOLETE U s
S 'N 0102-L F-014-6601 SI c a N f i ea

SECURITY CLASSIFICATION OF
r

THIS PAGE (When Date Ent



Foreword

The joint research in these two related papers was supported by

the Mathematics Research Institute, Federal Institute of Technology,

Zurich, where both authors were visiting scholars during 1980-1981.

They are reproduced in this format solely to facilitate wider

distribution before publication. "Further Results on Recursive

Evaluation of Compound Distributions" will be published in the ASTIN

Bulletin, and "Improved Approximations for the Distribution of a

Heterogeneous Risk Portfolio" has been submitted to the Bulletin of

the Association of Swiss Actuaries.
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Abstract

A recent result by Panjer provides a recursive algorithm for the com-
pound distribution of aggregate claims when the counting law belongs
to a special recursive family. In the present paper we first give a
characterization of this recursive family, then describe some general-
izations of Panjer's result.
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1. Introduction

Let w be the Lehesgue or the counting measure on (0,) , and

let R1 ,R2,... be independent, identically distributed random

variables (the independent severities) with cumulative distri-

bution F and generalized density f

F(x) = f f(y) di (y)
(O,xj

Let ft be a random variable (the claim number), independent of

the x's , defined on the non-negative integers with probabili-

ties:

Pn = Pr(H =n)

Then the generalized density g of the random sum (the aggregate

claims)

i=l "

(wetacitly assume 9 is zero if f is)

has an atom

(1.1) g(O) p 0

at zero, and for s > 0 the form

(1.2) g(s) = " n fn* (S)
n=l

where fn * denotes the n-th convolutior of f This formula

is extremely difficult to compute because of the high-order con-

volutions; only a few closed-form solutions are known.



Panjer (1981) has shown that, if there exist constants a and

b such that

b

(1.3) Pn = Pn-l (a +), (n = 1,2,...)

then

(1.4) g(s) = p1  f(s) + f (a +bs) f(x) g(s-x) du(x)
(Os)

(s > 0)

The importance of this result is that, when f is discrete, the

successive values of g can be recursively calculated. We now

consider various aspects of the relation between the recursions

(1.3) and (1.4), and then provide a variety of generalizations.

2. Characterization of the counting distribution

The following theorem characterizes the class of counting densi-

ties pn satisfying (1.3); it is essentially given in Johnson &

Kotz (1969).

Theorem 1

Assume that (1.3) holds. Then we must have one of the four cases:

0 (n - 0)(2.1) Pn =

1 (n > 0)
nn-

(2.2) n -A (X > 0)

Pn n!
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(2.3) = ( +n-l) p n (l-p) ( > 0, 0 < p < 1)
n

(2.4) Pn= ( ) (-p) N-n (0 < p < 1, N = 1,2,...)

Proof. To avoid negative probabilities we must have a + b : 0

For a + b = 0 we get the degenerate case (2.1). For the rest

of the proof we assume a + b > 0 If a = 0 we get the

Poisson density (2.2) with X = b . For a > 0 we introduce

a = (a+b)/a and get from (1.3)

ci-4n-1 n
Pn = PO ( n )

In order that Z n=l Pn < 1 , we must have a < I . Then we get

the negative binomial (Pascal) density (2.3) with p = a

Finally, assume a < 0 . Then, to avoid negative probabilities,

there must exist a positive integer N such that

a + b/(N+l) = 0 , that is, N = -(a+b)/a . With p = -a/(l-a)

we get the binomial density (2.4).

We have now proved the theorem.

Q.E.D.

The allowed regions for (a,b) are illustrated in Figure 1,

which is inspired by Johnson & Kotz (1969, p. 42).

Remark. For the case a < 0 Johnson & Kotz (1969, p. 41) also

develop a distribution for the case when -(a+b)/a is not an

integer, by letting pn = 0 when a + (b/n) < 0 . However, that

distribution does not satisfy (1.4) as we then must have that

(1.3) holds for all n > 0 . A modified version of (1.4) allow-

ing such "generalized binomial" distributions will be given in

Section 5. However, this version seems in most cases to be more

complicated than direct computation of (1.2). For the binomial

2P
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Figure I. Permitted (a,b) parameter space
for recursion (1.3) (The dotted area
denotes the increase obtained by
recursion (3.10) .
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distribution we have that Pr(n > N) = 0 , but as () 0 for

n > N we can let p be defined by (2.4) for all the non-nega-

tive integers.

3. Generalizations

We first introduce some notation: if zl,z 2 ,... are given

quantities, then we let

z zn

nZ i=l

denote the sum of the first n elements.

Assume there exists a function h : {(x,s) : 0 < x < s} -IR

satisfying the condition that

(3.1) 1 (h ( x 's) .n T = S) = mn (n 2,3 ....)

are independent of s

Then we have the following generalization of Panjer's result:

Theorem 2

if

(3.2) Pn Pn-1 m n (n = 2,3 ....)

with the sequence {m n } satisfying (3.1), then

(3.3) g(s) = p f(s) + fh(x,s) f(x) g(s-x) dui(x) . (s > 0)
(0,s)

Proof: We have for s > 0



g(s) = - f fp) -

f (S) n f (s)P -n-2 *n-i rI (

S f -n2 (n-i . h(x,s) f(x) f(n-l)*(s-x) du(x) =
(0,s)

(S + x )f x n*
P f(s) h(x,s) f(x)n p n f (s-x)] du(x) =

(0,s)

P1  f(s) + " h(x,s) f(x) g(s-x) dw (x)
(0,s)

Q.E.D.

It is clear that if the functions h1 and h2 both satisfy

(3.1), then for all constants c1  and c2 the function

cI h + c 2 h2 satisfies (3.1).

For all constants a and b we clearly have

xb

(3.4) 't (a + b R s) = a + (n = 2,3 .... )
s nZ ni

independent of s Hence the kernel in (1.3),

h(x,s) = a + b x
s

is a special case of (3.1) with

b
(3.5) m = a + . (n = 2,3,...)n n

The following example gives a distribution satisfying (3.1) with

m satisfying (3.5), but not covered by Panjer's result.

Example 1. Consider the logarithmic counting density

0 (n = 0)
(3.6) Pn n (0 < p < )

I na. (n =1,2,.)
Tn(-P) wn

Then we have
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Pn =p ( P (n - 2,3,...)

that is, m p[l - (1/n)] ; a = p ; b = -p , and for s > 0n

we obtain

x

g(s) = P1 f(s) + p f (1 -s) f(x) g(s-x) du(x)
(Os)

The difference from Panjer's result is that (1.3) does not hold

for n = I

Theorem 3

Assume that (3.1) is satisfied for the distributions given by

Pr(Ri=l) = 1 - Pr(Ri=2) = p , (p E [0,i )

Then there must exist constants a and b such that (3.5) is

satisfied.

Proof. For p = I and p = 0 we get

(3.7) m = h(1,n)n

(3.8) m = h(2,2n)

respectively.

Assume p E (0,1) ; u = 2,3 ... ; n = u , u + 1 .... 2u

Then



(3. ) ( f(n-1') (n n-1
f(Y) f ( 2 u-y) =2u-y-n+l (y 1,2)

(2u) (n)

By using (3.7), (3.8), and (3.9) in

f(1) f (n-l)* (2u-1)Sn ffn* (2u)

f(2) ff(n-l)* (2u-2) h(2,2u)fn* (2u)

we obtain

b u
m =a +n u n

with

au = 22 - m , b = 2u(m M

As

+ b u+ 1  + bu
u+ au+l u+l u u+l

b b=u+l 
+ b u

u+2 au+l + u2 -u u+2

we must have au+= au and bu+ = bu  for all u , Lhat is,

there exist constants a and b such that (3.5) is satisfied.

Q.E.D.

Theorem 3 says that if (3.1) is to hold for a class of two-point

distributions F, the sequence {n} must satisfy (3.5). This

result clearly implies tnat ii (3.1) is to hold for all distri-

butions on (0,-), the sequence {mn } must satisfy (3.5). Be-

cause of this fact we restate Theorem 2 for this particular class

of counting distributions.
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Theorem 2'

If

b
(3.10) Pn p (a 4-), (n2,3...)

then for all severity distributions F we have

(3.11) g(s) = plf(s) + I (a +b s ) f(x) g(s-x) du(x) . (s > 0)
(0,s)

We close this section by comparing the class of counting distri-

butions defined by (1.3) (that is, the class given in Theorem 1)

to the class defined by (3.10). Clearly the latter class con-

tains the former one. As in the latter class the recursion may

start at one, the restriction a + b >, 0 may for a > 0 be re-

placed by the weaker condition a + b/2 4 0 . Hence, the permit-

ted parameter space is now increased by the dotted region of

Figure 1.

As p0  may now be chosen (relatively) freely, the counting

distribution is no longer uniquely determined by (a,b) . For

(a,b) being in the permitted region for recursion (1.3), ex-

cluding the line a + b = 0 , the permitted class consists of

the distributions given by

p+ (1-p 0) (n 0 )

(3.12) Pn 0

(1-0) n F (n = 1,2,...)

where fn } is a counting distribution satisfying (1.3), andn

o is chosen such that P < i and p0  0. p n cleary satis-

fies (3.10) with the same (a,b) as for r n . In the discrete

case (3.11) may under the present condit.ions be written as

s
g(s) (a+b) f (s) + Z (a b ) f(x) g(s-x) (s > 0)

x=l
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For a + b = 0 the permitted class of counting distributions

is given by (3.12), with the obvious restrictions on j , and

Pn given by (3.6). A counting distribution [pn } of the form

(3.12) may be interpreted as a weighted (in a general sense,
as p may be negative) distribution of the distribution {n }

and a distribution concentrated at zero. Then the aggregate

claims distribution must be the analogous weighted distribution

of aggregate claims distributions, and if the aggregate claims

distribution g corresponding to 7n is known, we may find

the aggregate claims distribution gp corresponding to p n by

g() g + (i-Q) g(0) (S = 0)

g ())g (S) . (S > 0)

4. Results on specific severity distributions

From (3.4) and Theorem 3 we see that if (3.1) is going to be

satisfied for all F , then the sequence {m } must satisfy

(3.5). However, for specific classes of F there exist other mn

.. there exist other..
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The following obvious result is interesting in this connection.

Theorem 4

Let v be a function such that v is independent of

R n - for all n . Then (3.1) holds for any h that can be written

h(x,s) = k(v (x,s)) with t(h( , n)) existing for n = 2,3,...

Example 2. Assume that Rii 2 ,... are gamma-distributed with

parameters (a,v) . Then R1/XnZ is independent of XnZ and

beta-distributed with parameters (v, (n-l)v) . Hence, by Theorem

4, all h(x,s) = k(x/s) with t(k(k1/Rn)) existing for all n

satisfy (3.1). In particular, if

k(z) = zU(l-z)v

we get

' nv) "(% -u) F((n-l) v+v)
" = ((n-1) )) () r(n%;+u+v)

For v = 0 and u positive integer this gives

u-I u-l a.
"n i= nv+i i= 0 nv+i

for some aO0 ... ,a u_ 1 independent of n . Hence, for any positive

integer u there exist constants c1,.. ., cu+l such that

u+l i
k(z) = E c. zi=1 l

gives

1
n nv+u
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Example 3. Assume that the counting density is hypergeometric

n)M m

(4.1) Pn=

where the positive integer parameters (m,M,N) satisfy N < M

m < M - N For n > 0 we have

p n (m-nl)(N-n+l)Pn =  n-I n (M-m-N+n)

which may be written

Pn Pn- (a +b + Tc )
= - n n-m-N

with

a=

(m+l) (N+J)
N-M+m

C (M-m+l)(N-M-l)c = - N-M+m

Now, assume that the R's are gamma-distributed with parameters
3.

(a,v) , where v is a positive integer. As we may write

c cV
n+M-m-N nv+(M-m-N)v

by Example 2 we can find a function h such that Theorem 2 is

satisfied.

The extension to the eccentric hypergeometric distribution (see

Sverdrup (1976), with counting density
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p (X > 0)
n Pn' n

nn

where pn is given by (4.1), is obvious.

Similar approaches are possible for the following counting

distributions, described in Johnson & Kotz (1969): the displaced

Poisson distribution (p. 113); and the Yule distribution with

generalizations (pp. 244-251).

5. Recursion on a limited range

In the previous cases we have assumed that the pn can be com-

puted recursively for n > I . The following Theorem 5 extends

this to the case when the recursion holds only for n > K with

K1

Let

gK(s) p n f (s)

n=K

Then

g(s) = -Pn fn*(s) g K (s )

n=0

Theorem 5

Assume that

Pn = Pn-1 m n "(n K+1,K+2 ....

with mn given as in (3.1) Then
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(5.1) gK(s) PK f K*(s) + ." h(x,s) f(x) gK(s-x) d,(x)
(0,s)

(The proof goes as in Theorem 2 and is omitted.)

The difference from the underlying assumptions of Theorem 2 is

that (3.1) and (3.2) do not need to hold for n . K If (3.1)

holds for all n • 2 , insertion of

K-I
gK(s) = g(s) - Z Pn ff(s) (s >0

nzal

in (5.1) gives the final recursion:

K

(5.2) g(s) P f(s) + (p n-Pn m ) f n*(S)
n=2

+ f h(x,s) f(x) g(s-x) di(x) . (s > 0)
(0,s)

(The summation is zero if K = I .) Compared to (3.3) we have

now got the summation as a correction term, since this would be

zero if Pn - Pn-l mn = 0 for n = 2,...,K

For the special case of Theorem 5 with p 0 = p, = "'" = PK- = 0

(truncation from below) gK(s) = g(s) , and (5.1) gives

(5.3) g(s) p K f K*(s) + f h(x,s) f(x) g(s-x) du(x)
(0,s)

' illl | - - • '
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We shall now see what happens if the counting distribution is

truncated from above. Assume

/1 0 (n 0,...,K-l)

Pn Pn-l mn (n = K+Il, .. ,L)

0 (n= L l ....)

Then for s > 0 we get

(5.4) g(s) PK (S) PL mL+l f(L*l)*

+ I h(x,s) f(x) g(s-x) dw(x)
(0,s)

Unfortunately, in this formula we need high-order convolutions of

f . These can be rather complicated to compute, except for some

cases where we have simple closed-form expressions (gamma,

Poisson, binomial, negative binomial distributions). In some

cases the factor pL mL+l makes the correction term negligible.

Another possibility is for large L to approximate f (L+l)* by

a (possibly discretized) normal density. Otherwise it is probably

more efficient to compute g from the basic definition (1.1).

6. Extension to non-positive discrete values

We now leave the assumption that the Ri s are distributed on

(0,-) and assume that they are distributed on the set of all

integers:

f(x) = Pr(k=x) (x =

Then (1.1) must be replaced by
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(6.1) g(0) p0  + pn fnf (0)
n=l

We further assume that the counting distribution satisfies the

recursion (1.3), and analogously to Theorem 2 we obtain

(6.2) s g(s) = Z (as+bx) f(x) g(s-x)

If . only takes on zero plus positive values, so does s

then f n*(o) = [f(o)]n , and the sum in (6.1) can be carried out

explicitly (see the probability generating function for the count-

ing distribution in Johnson & Kotz (1969)). We then get the re-

cursive system

(a+b

41-a f(O) a
10 l-a (0

e-b[l-f(O)]; (a = 0)

(6.3)

g(s) Z (a +b) f(x) g(s-x)
-I-a f(0)) x=I

(s I)

The case where the x. can take on negative values is difficult

because one cannot, in general, find suitable starting values

for s in (6.2).

However,in the case where pn is Poisson with parameter X (2.2),

the density g can be computed by two applications of (6.3) plus

a convolution. Let

= max(0,k i)

(6.4) (i=1,2,...)

xi = max(0,-Ri),

L ........
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and we have

~+
xc s =~ii~l i=l

(6.5)

to us
Andrd Dubey has pointed out"/that when i is Poisson distributed,

then s and s are independent. Let R. and k, have

densities f+ and f , respectively, and s + and 9- have
4 - + -

densities g and g , respectively. Then g and g are

computed independently, using (6.3), with a = 0 , b = , and

the corresponding f or f . Then g for the total sum is

computed by the convolution

00.
(6.6) g(s) E g (x) g (x-s)

x--max (0, s)

(6.2) can, in principle, also be solved for pn binomial, if

f(x) is defined over (-K,-K+l,...) , for in that case there is

a largest negative value of the sum, s = -NK , and (6.2) can

be rearranged into a true recursive form.

Remembering that P = -a/(1-a) and N = -(a+b)/a , we get

the recursive system:

(0 (s -NK)
(S<

(6.7) g(s) [pf(-K)IN (s = -NK)

i (1-p- 1 )(s-K) g(s-K)(S+NK) f(-K)

S +NK
+ Z [(N+l)x-NK-s] f(x-K) g(s-x)

X=l

(s >-NK)
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Of course, if K is very large, there are obvious problems with

round-off error accumulation, especially if f(-K) and the nearby

values are very small. We remind the reader that this problem can

occur with any recursive scheme described in this paper where the

range of discrete severities is large.

There remains the case of pn negative binomial (2.3) for which

it does not seem possible to give a simple procedure for negative

9' s . Of course, in this and in the other cases, one can think

of various iterative schemes for (6.2) which would converge to

the correct density.
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Abstract

A traditional actuarial method for the diffizult task of
finding the exact distribution of a heterogeneous portfolio
approximates the distribution with a compound Poisson law
with identically distributed risks. This paper shows that a
Binomial compound law provides a better match to the second
moment of the distribution, thus giving a better approximation,
while retaining a simple, recursive algorithm for calculating
the distribution. A modified Binomial compound law further
refines the approximation, with slight additional work.
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Introduction

Let (x i;i=l,2,...N) be a fixed set of independent, non-identically

distributed, integer-valued random variables for which the probability

that any x .=0 is significant; we wish to find the distribution of the

sum Y=XI+i 2+...+x. In principle, the discrete density of y is calcu-

lated as the N-fold convolution of the discrete densities of the

individual x.; however, this task is already very time-consuming on1

digital computers for N larger than, say, 1,000, if the x. take on

more than a few different values.

An approximate method, used for many years by actuaries, utilizes

the fact that many terms in the sum may have value zero and computes y

as if it were the sum of a random number of identically distributed

random variables; in this method, the first moment of y is matched

exactly, and the second moment is matched approximately.

In this paper, we present an improved approximation method that

provides a much closer fit to the second moment, yet maintains a simple,

recursive algorithm for computing the density of the random sum.

Limited computational experience indicates that the approximation to the

distribution of y, and other functions of y, are much closer to their

true values than in the classical method.



The Heterogeneous Portfolio

For tne moment, we assume that the k. take only non-negative

values in the range 0,1,...R, and we separate the given

discrete density of R as follows:

(1) Pi = Prkx=0: = 1 i (i=1,2,...N)

(2) fi(x) = Pr*.i=x xi>O} (x=l,2 .... R)

(This is a traditional notation).

We wisn to calculate the discrete density g of the sum

N
(3= i= (y=O,l .... NR)

which is given exactly by the N-fold discrete convolution:

N
(4) g(y) = + qp (y) (y)]

where :(y)=l if y=O, and is zero otherwise. The approximation

to be described requires that "most" of the p. be "rather large".

Denote the first two moments of the positive part of the

random variables by

(5) m i = Exi .xi>of = Zxfi x) ; vi = Vjx. xi>Q: = -(x-m) f (x)

Then it is easy to show that the first two moments of the sum

y are:

N

(6) q() = qimi

N N2

(7) V(") = 2qv iq= I i i I  -:

"...2..i2
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The evaluation of g(y) is often required for insurance risk

portfolios, where i=l,2,...N indexes the policies in the portfolio,

assumed independent; p, is the usually significant n-claim

probability during a certain exposure period; q. is the probability

of at least one claim; and fi(x) is the density of aggregate

claims during the exposure period for policy i, given that at

least one claim occurs.

The situation is particularly simple in life insurance, as

usually just one claim occurs at death, and the fi(x) are often

only one- or two-point densities (e.g., the face value of a

policy i payable at the death of the assured, who has mortality

rate qi in this exposure period). Often, only the qi change from

one exposure period to the next. Approximation methods have become

less important in such simple cases, especially with N small, as

modern computers can often calculate the exact convolution (4)

directly. However, for large portfolios with arbitrary fi(x), the

problem of approximating g(y) still remains. Most approaches have

been based upon moment-matching, using (6) and (7).

The Collective Risk Model as an Approximation

One useful idea, from both the theoretical and computational

points of view, is to approximate the inhomogeneous, fixed portfolio

by a homogeneous risk collective, in which we replace the individual

policies by a mass of similar, anonymous policies, and assume that

is the sum of a random number, fi, of independent claims that are

identically distributed samples, (wl,W2 ,.. .wa) of a positive random

variable, w, with some prototypical claim density, f(w). If

(8) - = Prfn=n- (n=0,l,...) f(w) =Pr;I=wf (w=l,2,...)

then this leads to the well-known com2ound law of risk theory:

Sn *
9)gy 0 ( n) l nfyj
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The rationale for this approximation is easily seen. If the

p are significant, then the sum y=x 1 2 +...+x N will have a

varying number of non-zero terms; the sum could then be repre-

sented by =1+1;1 2 +...+, where these all-positive terms could

be considered to be identically-distributed samples from some
"representative" claim density, calculated by weighting each

f (x) according to its probability of occurence, qi"

If the prototypical claim moments are:

2,(10) m = E( ) = :wf(w) ; v = V(Q) = -(w-m) f(w)

tnen the moments of the random sum (9) will be:

(11) E(Y) = E(i)m

2
(12) V(y) = E(h)v + V(h)m

For a good approximation, the moments (11) (12) must be matched

as closely as possible to the exact values (6) (7), so that g(y)

and related functions calculated via (9) will match values

calculated via (4).

We are, of course, free in devising an approximation to

choose - n and f(w) in any way we choose. But the most naturalnI
way to fix the prototypical claim density, consistent with the

risk theory interpretation, is as the weighted sum:

:qif.(w)

(13) f(w) = (w=1,2 .... R)
qi

(This choice is also invariant under pre-aggregation of the

policies in a consistent way, for example, by lumping together

all policies with the same single face value and adding their

i's). With this choice, the moments of w become:qis)

(14) m (qimi.)/(Zq)

(_) v m2  2 q(. qj
-ivi )2qi(mi)2 )
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If (11) and (12) are to be matched exactly to (6) (7), then

this implies that the counting density, n must be chosen so

that:

(16) E(i) :qj

and

(17) V(fi) - Zq2(m /m) 2

The mean of ft is just the mean number of positive terms in (3);

however, the variance of counts is not the variance of the number

of positive terms, Zqjpj, unless the policies have identical

face values. This is because we are matching moments between two

different models, one where the sampling is without replacement,

and another where the sampling is independent.

Note that, in certain unusual cases where the p are small and the m.

are quite different from another, V(i) in (17) may be negative; in other

words, the approximation cannot be used. For instance, if N-2, ml-l,

m2-7 , and ql-q 2-q, then we find that q must be smaller than 0.64 to obtain

a positive variance. This makes precise our earlier remark that most of

the pi should be rather large.

The Poisson Counting Distribution

A good theoretical case can be made for the Poisson density:

n -

(18) = e
n I , (n=0,l ....)

as an appropriate choice for the counting law; Gerber (1979)

presents an argument based on a limiting result from the fixed

portfolio model, as well as an argument based upon a dynamic

portfolio, in which claiming policies are immediately replaced

by equivalent, non-claiming policies. (16) then leads to the

natural choice

(19) =
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But from (17) it can immediately be seen that the Poisson

assumption, which means VU(i)='%, leads to too large a value of

V(n) for the second moments (7) and (12) to match. In fact,

the collective approximation will now have a variance

2A

(20) V( ) = qi vi + rqi(mi) 2

which is greater than the correct value (7) by the amount
-22
-qimi•

Another, less critical, problem is that the probability of

no claim in the risk approximation:

(21) g(0) no = e = e i

is termwise greater than the true value from (4):

N
(22) g(0) = .p.

Discussion

:n addition to having a good fit between the approximation

and the original model, we would also like to have the computation

of g(y) via (9), and of related functions, to be efficient;

Gerber (1980) describes some of the traditional approximations to

the compound Poisson law which have been used by actuaries.

However, a simple recursive scheme for the Poisson case,

apparently due to Adelson (1966), has recently been promoted

as the most efficient solution to (9). In our notation, it can

be shown that:
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g(O) =

(23)

min(y,R)
g(y) = (/y) z xf(x)g(y-x) (y=l,2 ....)

x=l

T.iis enables exact values of g(O), g(l), g(2), ... to be
calculated successively, in a number of steps much less than

direct ways of calculating (9). A simple proof of (23), due
to BUhlmann and Gerber, can be found in Gerber (1980).

Applications can be found in Panjer (1980) and in Held (1980).

More recently, Panjer (1981), has extended the recursive

computation of g(y) to a larger class of counting distributions,

namely to nn that are (1) Poisson, (2) Binomial or (3) Negative
Binomial (Pascal) (See also Sundt & Jewell (1981) for genera-

lizations).

The Binomial Counting Distribution

From (16) (17), we know that for our problem we want the
variance of f to be smaller than the mean; this suggests an

improved approximation might result from using a Binomial

counting density:

(24) = niT (1-7) , (n=0,l.... M)
n n

with moments

(25) E(i) = 7M ; V(i) = 7M(1-7)

For this counting law, Panjer (1981) shows that (23) is

replaced by:



-8-

g(0) = 1- ')

(26)

, min(y,R)
g(y) = * '(M+I) (x/y)-lf(x)g(y-x) , (y-l,..2 .. R)

so that the recursive computation is still more efficient than

using (9).

Note especially that we are not proposing to set M-N, so that

both parameters (M,r) are available to match (16) (17). For an

exact match of the first two moments, we require that:

(27) M - (Zqimj) 21(m.2" m 2 =

(The reader may easily show that MIN).

However, the Binomial recursive algorithm only works for M

integer, so the value obtained above must be rounded up or down,

and then i readjusted to provide an exact fit to the first moment.

The variance of ni and of ) will be slightly too large (too small),

compared with (16) (17), if M is adjusted upwards (downwards)
from the exact value. But this error is in general quite small

for moderate values of N.

The Binomial counting distribution also has a good theoretical

justification, for if the original portfolio is, in fact, homo-

geneous, with qi-q0 and mi=m0 for all i=,2 .... N, then we have

*n exactly Binomial, with M=N and 1-q0 .

For small ±nhomogeneities, if we set:

(28) mi m + Ui  qi = q0 ; (i-1,2...N)

where m is defined in (14), and

(29) q0  = :q/N
j



-9-

we find that, to first-order terms in .i and %i:

(30) Z q0 l + (2/N)Z(i/m)

(31) M Z Nil - (2/N)Z(Li

that is, only the small inhomogeneities in mi affect the

values of M and n.

If our original portfolio becomes quite large (N--),

but the policy characteristics (qi,mi) remain comparable,

then (27) implies that M is of order N and will thus increase

without limit, but that i will remain relatively stable.

This means that we do not expect that, in the limit, our

Binomial counting law will become approximately Poisson

(which would require M--, 7-0, with Mr=A). The justification

of the Poisson law thus requires other limiting conditions.

Associated Functions

As pointed out by Gerber (1980), once a recursive procedure

for the density g(y) = Prt9=y: has been set up, it is a trivial

matter to initialize and calculate other associated functions.

The functions which seem of most interest are the complementary

distribution function:

cy
GC (y) = Pr( >yj g(x) = 1.0 - - g(x)

x=y+l x=0

and the "stop-loss premium":

-Yv-1 1
tsI(Y) = E (9-y)+} =7 Gc(x) = E(") - G W

x=y X=0
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Extension to Liegative Discrete Values

Aaelson's and Paner's algorithms were developed only for

positive Qi , which is why the above discussion was limited to

the sum of non-negative k,. However, Sundt & Jewell (1981)

indicate how arbitrary values, say 5i in the rar'ge -L..... ..Ri

(L,R>0), can, in principle, be handled for 7n Poisson or Binomial;
we develop only the Binomial case.

First of all, (2) is replaced by:

(32) fW(x) Pr.i =xi/0}

and (26) is replaced by:

"B
(33) g(y) _- A (M+l)(x/y) - llf(x)g(y-x) , (-MLyMR; yO)

where A=max(y-MR,-L), and B=min(y+ML,R).

g(Q) is no longer calculable explicitely from this form, but both

g(-ML) and g(MR) are available from first principles, and (33)

can be re-arranged to start the recursion at either end.
Starting from the lower end, we obtain:

0 (y<-ML) and (y>MR)

3 [rf(-L)l (y=-ML)

g(y)

I -(-1-) (y-L) g(y-L)
,(y+ML) f(-L)'

C
+Z (M+l)x-ML-y]f(x-L)g(y-x) (otherwise),
x=l

with C=min(y ML,L R).
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Of course, if L is very large, then there are obvious

problems with the accumulation of round-off error, especially

if f(-L) and nearby values are small. One can also imagine

multi-pass recursive procedures, or iterative techniques

using (33) to resolve these numerical-analytic difficulties.

Further Improvements

One can readily imagine a variety of further improvements

to the Binomial compound law to provide a better approximation:

for example, since (9) is linear in the (7 n), one could take

a linear mixture of several counting distributions, and then

mix the results of the corresponding recursively calculated

aggregate claim densities; this would enable matching higher

moments or other attributes of the true density (4).

One direction which we have examined is to provide a better

fit to the true value of g(O)=npi, which, as previously mentioned,

is too large in the Poisson case; the Binomial law, g(0)='0 =(l-),

seems to give a better numerical fit, but we cannot guarantee

this.

In Sundt & Jewell (1981), it is shown how to modify the

Panjer algorithm so that the new counting density (7) can take

on values:

+ 4 (i- )T 0  (n=O)

(35) TO

where the Tn are Binomial (n,M). Alternatively, one can continue

to use (26), and mix the resulting density in the obvious way

with the degenerate density at zero. This modified Binomial

compound law gives us three degrees of freedom (j,7,M).
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Assuming that claim amounts are positive, we can match

g(O) by

(36) g(O) z + (1-O) (l-n) M  
=

and (25) becomes

(37) E(fi) - (l-4)iM ; V(i) (l-c)>M(l-) + ZIM 2

These must be matched numerically to the true values (22) (16) (17)

by iterative numerical methods, which we shall not describe. As

before, the integrality of M means that we cannot exactly match

both the second moment and g(O), so that one has to decide which

improvement is more important.

We shall see in the example to follow that this modified

Binomial provides only a modest improvement over the Binomial,

and suggests that further refinements will be of marginal value.

A Numerical Example

To illustrate the effect of the approximation improvement,

we use a numerical example due to Gerber (1979), in which there

are N=31 policies, and the random values Ri are either 0 or a

*face value", c., with probability pi or q,, respectively, as

shown in Table I (The duplication of identical policies is

typical). Thus mi=ci and vi=0 (i=l,2 .... 31).

Face Values c

li 1 2 3 4 5

.03 2 3 1 2 -

.04 - 1 2 2 1

.OS - 2 4 2 2

.06 - 2 2 2 1

Table I. Number of Policies with Indicated qi and c .

L , = o ,m . . . |. . . . . . . . . . . . | • . . . . . . . . . .'
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The exact values of the density g(y), the complementary

distribution G C(y), and the stop-loss premium lsl(y), were
obtained by convolving 31 two-point (O,c.) densities, and

are given in column three of Tables IV, V, and VI. From (6)(7),

we find that the first two moments of the original portfolio

are:

E(j) - 4.49 V(k) = 15.3003

and that g(O) = 0.23819

The unnormalized prototypical claim density (13) used in

both collective risk approximations is shown in Table II.

x 1 2 3 4 5

1.4 f(x) .06 .35 .43 .36 .20

Table II. Density of equivalent homogeneous claims.

The first two moments of this "severity" density are:

m = 3.207143 ; v = 1.207092

Thus, from (16) (17), the "counting" density moments for

an exact fit of a collective risk approximation must be:

E(A) = 1.4 V(s) = 1.323224

Three approximations were computed using recursions (23) and

(26) and the method of (35),giving the numerical matching shown

in Table III.

Exact Approximations

Values Poisson Binomial Modified
__________ __________ B inomi.al1

E(y) 4.49 4.49 4.49 4.49

V(j) 15.3003 16.0900 15.3146 15.300i

Pr(j-0i-g(0) 0.23819 0.24660 0.23714 0.23809

Table III. Value Matching for Numerical Example.
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In the Poisson approximation, '=1.4 fixed E(9)=4.49 as

desired but V(y)-16.0900 and g(0)=0.24660 are significantly

too large. Results using the recursion (23) (part of which

were also given in Gerber (1979)) are shown in column two

of Tables IV, V, and VI.

For the Binomial counting distribution, an exact match of

the first two moments would require M=25.528480 and 7=0.0548400.

Rounding up, we select integer M=26, and adjust i=0.0538462 to

keep E(9)=4.49. V( )=15.3146 is still significantly close to

the exact value of 15.3003, but g(0)=0.23714 is now less than

the true value. Note that the range of the Binomial approximation

extends, in principle, to 5x26=130, whereas the largest possible

total claim sum of the original portfolio is only 97. However,

reference to Table V shows that the probability of a claim

larger than 40 is already of order l0 -9

For the modified Binomial approximation, we must use (36)(37)

to find the parameter values to match the first two moments and

g(0); These turn out to be M-21.737130, i=0.0648672, and

&=0.00711084. Rounding up, we set M=22, and readjust the other

values to match the mean and variance, giving finally 7=0.064055

and j=0.00653874. As can be seen from Table II1, the resulting

mismatch in g(0) is quite small.
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g(y) = Pr =yi

EXACT APPROXIMATIONS

Y RESULT POISSON BINOMIAL MODIFIED
BINOMIAL

0 0.23819 0.24660 0.23714 0.23809

1 0.01473 0.01480 0.01504 0.01494

2 0.08773 C.08675 0.08818 0.08762

3 0.11318 0.11122 0.11313 0.11246

4 0.11071 0.11040 0.11256 0.11206

5 0.09633 0.09286 0.09507 0.09492

6 0.06155 0.06101 0.06291 0.06315

7 0.06902 0.06543 0.06732 0.06759

8 0.05482 0.05458 0.05589 0.05613

9 0.04315 0.04132 0.04197 0.04217

10 0.03011 0.03058 0.03071 0.03086

11 0.02353 0.02331 0.02311 0.02321

12 0.01828 0.01834 0.01797 0.01802

13 0.01251 0.01315 0.01265 0.01266

14 0.00871 0.00922 0.00866 0.00865

15 0.00591 0.00650 0.00596 0.00593

16 0.00415 0.00460 0.00411 0.00408

17 0.00272 0.00318 0.00277 0.00273

18 0.00174 0.00212 0.00179 0.00176

19 0.00112 0.00141 0.00115 0.00112

20 0.00071 0.00094 0.00073 0.00071

30 3.09434x10-6 I8.63294xl0 -6 1 .80x--_ .18 1

40 13.53514x1099 36.4155 x109' 7.37055x1.0- 3 .46425xl0 9 -

Table IV. Total Sum Densities in Example (Differing digits

underlined).

. . . .M e a . .. .. ,. . . . . . . . .. . ..
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G (y) = Pr '>y:

EXACT APPROXIMATIONS

y RESULT POISSON BINOMIAL MODIFIED
BINOMIAL

0 0.76181 0.75340 0.76286 0.76191

1 0.74707 0.73861 0.74782 0.74696

2 0.65934 0.65185 0.65964 0.65934

3 0.54615 0.54063 0.54651 0.54688

4 0.43544 0.43023 0.43395 0.43482

5 0.33912 0.33737 0.33888 0.33990

6 0.27757 0.27637 0.27597 0.27675

7 0.20855 0.21094 0.20865 0.20916

8 0.15373 0.15636 0.15276 0.15303

9 0.11058 0.11504 0.11079 0.11086

10 0.08048 0.08446 0.08008 0.08000

11 0.05693 0.06115 0.05696 0.05679

12 0.03866 0.r4281 0.03899 0.03877

13 0.02615 0.02966 0.02635 0.02611

14 0.01744 0.02044 0.01769 0.01746

15 0.01153 0.01394 0.01173 0.01153

16 0.00738 0.00934 0.00762 0.00745

17 0.00467 0.00617 0.00485 0.00472

18 0.00292 0.00404 0.00306 0.00296

19 0.00181 0.00263 0.00192 0.00184

20 0.00110 0.00169 0.00118 0.00112

30 3.49840.10 6 r 12,4621.10 6  4.8724~.x0 .L.2.Qx10

40 F3.10833xl10 145-298.X1091 7,2A.4 X109 i.26013XIO-9

Table V. Complementary Distributions in Example (Differing digits

underlined).
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sl(y) E [( -y)

EXACT APPROXIMATIONS

y RESULT POISSON BINOMIAL MODIFIED
BINOMIAL

0 4.49000 4.49000 4.49000 4.49000

1 3.72819 3.73660 3.72714 3.72809

2 2.98112 2.99799 2.97932 2.98113

3 2.32179 2.34614 2.31968 2.32179

4 1.77563 1.80551 1.77317 1.77491

5 1.34019 1.37527 1.33922 1.34009

6 1.00106 1.03790 1.00034 1.00019

7 0.72350 0.76153 0.72437 0.72345

8 0.51495 0.55059 0.51572 0.51428

9 0.36122 0.39423 0.36296 0.36125

10 0.25064 0.27919 0.25217 0.25039

11 0.17017 0.19472 0.17209 0.17039

12 0.11322 0.13357 0.11513 0.11360

13 0.07456 0.09076 0.07614 0.07483

14 0.04840 0.06110 0.04979 0.04872

15 0.03096 0.04065 0.03210 0.03126

16 0.01943 0.02671 0.02037 0.01973

17 0.01205 0.01737 0.01276 0.01228

18 0.00738 0.01120 0.00791 0.00756

19 0.00446 0.00716 0.00485 0.00460

20 0.00265 0.00453 0.00293 0.00276

30 17.253.53x1 0-6 129.7953x10 6 1 10.5809x10 -6 ] 8.88376x10-6

40 .5.72441.X10 9101.020x10- 14.6686X10- . 10.1485xl10

Table VI. Stop-loss Premiums in Example (Differing digits

underlined).
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Comparison of the different results for the density, g(y),

in Table IV shows, as expected, that none of the approximations

is a particularly good point estimator; because of the differences

in the models, the approximations are forced to fluctuate above

and below the exact density. The modified Binomial is generally

better than the Binomial, which is generally better than the

Poisson, although this is by no means uniformly true.

However, when we examine the complementary distributions,

Gc (y), in Table V, the approximations become more stable, and

the Binomial is always better than the Poisson, except for y=6.

The modified Binomial is uniformly best only from y=12 onwards.

The approximations to the stop-loss premiums, 1sl(y), in

Table VI, are even more stable, and show clearly the value of

matching the second moment for this "tail of the tail". The

Poisson is always worst, and the modified Binomial always best,

except at y=6.

These remarks can be more easily visualized in Figures 1, 2,

and 3, which show the percentage error in each approximation for

the functions of interest. In addition to the remarks above,

it is of interest to observe the inevitable degredation of all

approximations at large values of y. It can be shown theoretically

(Bihlmann, et al. 1977) that the Poisson approximation gives

too conservative (large) a value for the stop-loss premium for

all values of y. Our example suggests all of these approximations

are eventually "too dangerous" in the tails. However, it should

be remembered that the actual values of the probabilities and

of the absolute errors are quite small above y-20.
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Conclusions

Naturally, only limited conclusions can be drawn from a

single computational example. However, we believe that the

Binomial compound law is a significantly better approximation

to the distribution of the original heterogeneous portfolio

thin the traditional Poisson compound law approximation;

furthermore, it can also be computed recursively with little

increase in difficulty. There also seems to be evidence that

the slight additional work to set up the modified Binomial

compound law approximation will be worthwhile if more accurate

values of the complementary distribution or the stop-loss premium

are desired in the tails.
t

It remains to be seen whether there are significant differences

between these approximations for real risk portfolios, where N

and R are both large, and where round-off error accumulation may

become important in any recursive method. There have been some

claims that other approximation methods or fast Fourier transforms

may be competitive under these conditions.

Finally, we must keep in mind the ever-increasing capabilities

of digital computers, and the fact that many real portfolio

distributions can best be calculated directly.
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